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This work is used to aid in the development of spawning site habitat classification and catchability indices of larvae developed from remotely sensed satellite data, in order to reduce the variance in the estimates of adult Atlantic bluefin 

tuna indices of larvae spawning stock abundance in the Gulf of Mexico 

Figure 1. Process for the creation of data products from remotely sensed sst, chl_a, and AVISO altimetry products. 

From left to right 7-day means of chl_a, ssha, sst, and scv.  Bottom left and right: compiled overlays of ssha and chl_a 

and sst and scv, respectively.  

7-day Chl_a and SST Means with Altimetry Contours 

Introduction 
 

The management of fisheries requires accurate estimates of spawning stock biomass, preferably through 

use of accurate fishery independent indices. Better understanding of environmental variables that affect 

larvae distribution in the Gulf of Mexico will help improve fisheries-related indices. We studied whether 

larvae catch during annual NOAA surveys were related to mesoscale circulation features. Visual and 

automated methods of classifying the features were compared. Variability in larval abundances and 

species diversity was assessed using non-parametric MANOVA and distance-based Canonical 

Discriminant Analysis (db-CDA).  

Methods 
 

Larval abundances (number of larvae per m3) collected in the Gulf of Mexico during the NOAA SEAMAP 

(Southeast Area Mapping and Assessment Program) Spring Ichthyoplankton survey (April-June 1993-

2007) [1] were compared with sea surface height (SSH) maps obtained from satellite altimeters [2, 3]). 

Surface Current Velocity (SCV) was obtained from AVISO, and were derived using the Rio model. 

 

Mesoscale features were characterized as cyclonic or anticyclonic regions, cyclonic or anticyclonic 

boundaries, or Gulf of Mexico ‘common water’ based on the analysis of SSH and the SSH gradient or 

grad(SSH) values: 

 
  an anticyclonic region (AR) when: 

SSH  SSHmax – n(SSH) 

  a cyclonic region (CR) when: 

SSH  SSHmin + p(SSH) 

  an anticyclonic boundary (AB) when:  

SSH  mSSHmax    and    grad(SSH)  r(grad(SSH)) 

  a cyclonic boundary (CB) when: 

SSH  qSSHmin    and    grad(SSH)  r(grad(SSH)) 

  or common waters (CW) if none of these conditions are satisfied 

 

with    m = 0.91;   n = 3.30;    p = 0.60;    q = 1.08    and    r = 0.67    (optimized for better results). 

 

Also, seven day means of Sea Surface Temperature (SST) obtained from Advanced Very High Resolution 

Radiometer (AVHRR) and chlorophyll_a (CHL) from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) were overlaid with contours of AVISO 

sea height anomaly (SSHA) ¼ degree gridded data products for the survey sampling periods(Fig. 1). 

Station locations were plotted on the combined altimetry and SST or CHL image and used to determine 

mesoscale features by visual inspection.  

 

Visual classification of features was necessary because the automated feature classification algorithm 

was not able to differentiate between Anticyclonic Regions (AR) and the Loop Current (LC) and  Loop 

Current Boundary (LBO). The higher spatial resolution (7 km) of the SST and CHL products allowed the 

resolution of finer scale processes sometimes missed by the altimeter data (Fig. 1). Boundaries of 

features were determined by fronts in SST or CHL_a completely surrounding a feature. 

 

Mean abundances of larvae for each mesoscale feature class was standardized by total numbers 

sampled for  all larvae captured in that feature class. A non-parametric pairwise Manova and distance 

based-Canonical Discriminant Analysis was then used. 

 

These differences maybe attributed to the decreased detail of classification yielded by the 

automated classification of mesoscale features and the larger spatial range given to the category 

of anticyclonic boundaries by the automated classification, both possibly inflating the abundances 

within specific feature classes. 

 

To test how strongly associated with each class of mesoscale features an individual species of 

larvae was, a non-parametric-Manova and distance based Canonical Discriminant Analysis was 

used. 

 

Given an alpha level of 0.05 and a p-value of 1x10-3 of the np-Manova, we can reject the null 

hypothesis that there are no significant differences in larval abundance and composition 

associated with mesoscale  features. There are differences in larval abundances and 

compositions based on mesoscale features. 

 

Sample sizes are small in this data set, due to low catch rates associated with this type of 

sampling. Higher abundances, and numbers of stations with positive larval abundances would 

have made the test more powerful allowing us a greater ability to detect differences when they 

exist. There is a slightly significant relationship between the response and predictor variables, 

with mesoscale features accounting for 75% of the total variation in larval fish abundance and  

composition. 

 

The CDA plot (Fig. 4A) provides a graphical depiction of the differences in mesoscale features 

associated with the variances in larval abundance along the first two canonical axes. The 

ordination biplot diagram (Fig. 4B) provides an overall summary of the multivariate relationships 

between the response variables (larval fish abundance) and the predictor variables (mesoscale 

features). The relative locations and distances among larval fish groups plotted in the diagram 

reflect those differences in larval abundance explained by mesoscale features, with cartesian 

distance on the plot proportional to differences in abundance.  

 

Abundance of bluefin tuna have higher association along canonical axis I (Fig. 4B). The length of 

each vector is proportional to the strength (magnitude) of the underlying gradient of each 

variable. However, since Canonical Axis I contributes the most to the "percent variation 

explained", the distribution of mesoscale feature classes for abundances that are parallel to that 

axis (or have a significant component along that axis) (Fig. 4A) are deemed more important than 

those that do not. Anticyclonic regions therefore show more importance in determining regions of 

higher abundance of bluefin tuna.  
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Standardized Mean Abundance of Larvae in 

Mesoscale Features 

Figure 3. Standardized Mean Abundance of larvae of (a) Thunnus thynnus, (b) Auxis, (c) 

Coryphaenidae, (d) Euthynnus, (e) Other Thunnus, found in anticyclonic boundaries (AB, orange 

bar), anticyclonic regions (AR, red bar), cyclonic boundaries (CB, light blue bar), cyclonic regions 

(CR, dark blue bar), common waters (CW, yellow bar), Loop Current boundary (LBO, light green 

bar), Loop Current (LC, dark green bar). Calculated from altimetry derived fields (left) and visual 

classification (right) spring SEAMAP sampling from 1993 to 2007. (Note different scales in Y-axes) 
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Db-CDA and Ordination Bi-plot of Larval 

Abundance and Mesoscale Features  

Figure 4. A: Canonical Discriminant Analysis of mesoscale features, this plot shows the relationship of 

mesoscale features with the variance in larval abundance associated in the first two axis of the CDA, 

common water (CW, red circle), Loop Current (LC, green plus sign), cyclonic boundaries (CB, blue triangle), 

Loop Current Boundary (LBO, blue asterisk), cyclonic region (CR, black star), anticyclonic boundaries (AB, 

blue square), anticyclonic regions (AR, green diamond). B: Ordination bi-plot of Thunnus thynnus –Thunnus 

(BFT),  Auxis , Coryphaenidae, Euthynnus , Other Thunnus – Thunnus (non-BFT). 
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Results 

 

Automated assessment of larval abundances using algorithms to determine mesoscale features found 

higher numbers of larvae of bluefin tuna, bullet/frigate tuna, and little tunny associated with anticyclonic 

boundaries and common water. Blackfin/yellowfin tuna and dolphinfish abundances had a broader spatial 

distribution and were not associated with any clear feature class (Fig. 3). 

 

The visual classification indicated that more bluefin tuna and dolphinfish larvae were associated with 

anticyclonic regions. Little tunny were more closely associated with anticyclonic boundaries. Bullet/frigate 

tuna and blackfin/yellowfin had a broader distribution with slightly higher abundances along the Loop 

Current Boundary (Fig. 3). 

 

 

Figure 2. 7 day Mean SST image with mesoscale  featrue classifications illustrated. 

Common water (CW), Loop Current (LC), cyclonic boundary (CB), Loop Current 

Boundary (LBO), cyclonic region (CR), anticyclonic boundary (AB), anticyclonic region 

(AR)  

Conclusions 
 

Position and strength of mesoscale features in the GOM influence the area and persistence of 

habitat favorable for larvae distribution. Variability in the formation of eddies in the Gulf of 

Mexico Loop Current was reflected in larval fish distributions. Each taxa had a different feature 

class that the highest abundances were associated with. The Canonical Discriminant Analysis 

(CDA) indicates only bluefin tuna showed a clear relationship to any feature class , anticyclonic 

regions, and have larval abundances and compositions where bluefin tuna are present very diff 

 

The CDA offers a better method for the analysis of beta diversity in larval fish abundances than 

ANOSIM or SIMPER analysis which do not correctly partition the variation in the data or give 

proper type-I error rates [5].  

 

The larval fish distributions in the GOM common waters regions may be investigated in future 

research by utilizing other indices derived from satellite data. 
 


